Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.coverage.spatialMéxicoes_MX
dc.creatorLugo Olmos, Igores_MX
dc.creatorAlatriste Contreras, Martha G.es_MX
dc.date.accessioned2022-09-28T15:08:29Z-
dc.date.available2022-09-28T15:08:29Z-
dc.date.issued2022-
dc.identifierhttps://www.nature.com/articles/s41598-022-17665-3-
dc.identifierhttps://doi.org/10.1038/s41598-022-17665-3-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://ru.crim.unam.mx/handle/123456789/1206-
dc.description.abstractDuring the period of time between a new disease outbreaks and its vaccine is deployed, the health and the economic systems have to find a testing strategy for reopening activities. In particular, asymptomatic individuals, who transmit locally the COVID-19 indoors, have to be identified and isolated. We proposed a 2D cellular automaton based on the SI epidemic model for selecting the most desirable testing frequency and identifying the best fitting size of random trails on local urban environments to diagnose SARS-CoV-2 and isolate infected people. We used the complex systems approach to face the challenge of a large-scale test strategy based on urban interventions, starting with first responders and essential workers. We used the case of Mexico to exemplify a credible and intelligent intervention that reduces the virus transmission and detects economic and health costs. Findings suggest that controlling and stopping the virus transmission in a short period of time are possible if the frequency of testing is daily and the percentage of random samples to be tested is at least 90%. This combination of model parameters represents the least expensive intervention compared to others. Therefore, the key for a national testing-isolating strategy is local interventions.es_MX
dc.formatPDFes_MX
dc.languageenges_MX
dc.publisherSpringer Naturees_MX
dc.rightsLa titularidad de los derechos patrimoniales de esta obra pertenece a Springer Nature. Su uso se rige por una licencia Creative Commons BY 4.0 Internacional, https://creativecommons.org/licenses/by/4.0/legalcode.es, fecha de asignación de la licencia 2022-09-20, para un uso diferente consultar al responsable jurídico del repositorio por medio del correo electrónico repositorio@crim.unam.mxes_MX
dc.sourceScientific reports, 12, 13481 (2022)es_MX
dc.subjectComputational sciencees_MX
dc.subjectInfectious diseaseses_MX
dc.subjectSocioeconomic scenarioses_MX
dc.titleIntervention strategies with 2D cellular automata for testing SARS-CoV-2 and reopening the economyes_MX
dc.typeArtículo de investigaciónes_MX
dcterms.accessRightsAcceso abiertoes_MX
dcterms.bibliographicCitationLugo, I. y Alatriste Contreras, M.G. (2022). Intervention strategies with 2D cellular automata for testing SARS-CoV-2 and reopening the economy. Sci Rep 12, 13481es_MX
dcterms.creatorLugo Olmos, Igor: orcid: 0000-0003-3490-2654-
dcterms.identifier44-
dcterms.mediatorrepositorio@crim.unam.mxes_MX
dcterms.provenanceCentro Regional de Investigaciones Multidisciplinarias, UNAMes_MX
dc.description.memberOfArtículos de investigaciónes_MX
dc.description.setEstudios Regionaleses_MX
Aparece en las colecciones: 2. Artículos de investigación



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.